

ORGANIZATION AND STRUCTURE

The term genome was introduced by H.Wrinkler 1920 to denote the complete set of chromosomal and extra-chromosomal genes present in an organism, including a virus. The genome is the full complement of genetic information in a cell, and contains the programme required for that cell to function.

GENOME ORGANIZATION IN PROKARYOTES •Do not contain nucleus and membrane bound organelles

- Simple genome organization
- •Genes usually do not have introns and histone protie

•circular double-stranded DNA molecule but may be a linear molecule in some major groups

Supercoiling

Viruses Procaryotes

Genome organization in eukaryotes

- Much greater complexity than prokaryotes a. much more DNA in cells
- Many proteins specifically associated with DNA
- DNA in eukaryotes organized into 2 or more chromosomes
- Chromosomes have roughly equal amounts DNA & protein

Chromosomes: The Carriers of Hereditary Material

DNA double

RNA in TMV

DIFFERENT MODELS FOR DNA PACKAGE IN CHROMATIN FIBRE STRUCTURE

Molecuar model- TAYLOR

chromatid consists of only one DNA chain where several DNA double helices are linked end to end by protiens

Multistrand model or polyneme chromosome- RIS

chromosome is multistranded i.e. it contains several DNA double helices arranged parallel to each other

General chromosome model- CRICK

DNA in a chromatid is a longer monomer which runs continuosly from one end to another.

Band and inter band regions are present

Folded fibre model- DUPRAW

ORGANIZATION OF CHROMATIN FIBRE IN FOLDED FIBRE MODEL

COILED DNA MODEL- DUPRAW

* NUCLEOSOME SOLENOID MODEL-KORENBERG AND THOMAS

COMPONENTS OF NUCLEOSOME

* NUCLEOSOME CORE LINKER DNA H1 PROTIEN

Steps involved in genome organization in eukaryotes

- Nucleosome formation
- Formation of Chromatin
 Fiber or Solenoid Fiber
- Loop formation
- Chromosome

Nucleosome formation

		Base pairs per turn	Packing ratio
DNA double heix	2 curs	10	
"Breads on a string" chromatin form	11 nm	80	6-7
Solemoid (six nucleosomes per turn)	30 nm	1200	10
Relegel !	~ 0.25 µm	60,000	680
Minibund (18 loops)	0.84 µm	-1.1×10 ⁴	1.2×104
Chromosome (stacked minibands)	0.84 jum	18 loops/ minibanst	1.2×104

- Genome size is the total amount of DNA contained within one copy of a genome
- It is typically measured in terms of mass in picograms (pg) or megabases (Mb)

		No. of genes	
Plant	Genome Size	(chromosome	Status (year)
		no.)	
Arabidopsis	130 Mbp	25,498 (5)	Completed (2000)
Rice	430 Mbp	37,544 (12)	Completed (2004)
Maize	2.5 Gbp	32,500 (10)	Completed (2009)
Sorghum	700 Mbp	34,496 (10)	Completed (2007)
Pigeonpea	833.07 Mbp	48,680 (11)	Completed (2011)
Soybean	950 Mbp	46,430 (20)	Completed (2010)
Potato	840 Mbp	39,031 (24)	Completed (2011)
Brassica	283.8 Mbp	41,174 (10)	Completed (2011)
Populus	480 Mbp	41,377 (19)	Completed (2006)
Рарауа	372 Mbp	28,629 (9)	Completed (2008)
Grapes	500 Mbp	26,346 (19)	Completed (2007)
Medicago	240 Mbp	-	Completed (2011)
Castor	320 Mbp	31237 (10)	Completed (2010)
Apple	742.3 Mbp	57,386 (17)	Completed (2010)
Lotus	450 Mbp	-	Completed (2008)
Foxtail Millet	406 Mbp	32,095 (9)	Completed
Cucumber	243.5 Mbp	26,682 (7)	Completed (2009)
Brachypodium	335 Mbp	25,532 (5)	Completed (2010)

Cvalue

- Cvalue means, it's the total amount of DNA in haploid genome.
- Cvalue = mass of DNA / haploid genome. It's characteristic of each genome of species.
- Its measured using cot technique.

Eukaryotes

Densitometric measurements of Feulgen -stained nuclei (previously using specialized densitometers) or flow cytometry.

Prokaryotes

Pulsed – field gel electrophorosis and complete genome sequencing method

Genome size variation

- Cell size
- Cell division
- Organ size
- Organ complexicity
- Body size developmental rate
- Chromosomal mutations
- Insertions and deletions
- Transposable elements

